Heat kernels and Hardy spaces on non-tangentially accessible domains with applications to global regularity of inhomogeneous Dirichlet problems

نویسندگان

چکیده

Let n ≥ 2 n\ge 2 and alttext="normal upper Omega"> Ω encoding="application/x-tex">\Omega be a bounded non-tangentially accessible domain (for short, NTA domain) of alttext="double-struck R Superscript n"> mathvariant="double-struck">R encoding="application/x-tex">\mathbb {R}^n . Assume that alttext="upper L Subscript D"> L D encoding="application/x-tex">L_D is second-order divergence form elliptic operator having real-valued, bounded, measurable coefficients on squared left-parenthesis normal Omega right-parenthesis"> ( stretchy="false">) encoding="application/x-tex">L^2(\Omega ) with the Dirichlet boundary condition. The main aim this article threefold. First, authors prove heat kernels alttext="left-brace K t Super D Baseline right-brace greater-than 0"> fence="false" stretchy="false">{ K t stretchy="false">} &gt; 0 encoding="application/x-tex">\{K_t^{L_D}\}_{t&gt;0} generated by are Hölder continuous. Second, for any alttext="p element-of 0 comma 1 right-bracket"> p ∈<!-- ∈ <mml:mo>, 1 stretchy="false">] encoding="application/x-tex">p\in (0,1] , introduce ‘geometrical’ Hardy space H r p H r encoding="application/x-tex">H^p_r(\Omega restricting element double-struck n encoding="application/x-tex">H^p(\mathbb {R}^n) to show that, when StartFraction Over plus delta EndFraction + δ<!-- δ </mml:mfrac> (\frac {n}{n+\delta _0},1] right-parenthesis equals Sub = )=H^p(\Omega )=H^p_{L_D}(\Omega equivalent quasi-norms, where encoding="application/x-tex">H^p(\Omega encoding="application/x-tex">H^p_{L_D}(\Omega respectively denote associated alttext="delta encoding="application/x-tex">\delta _0\in critical index continuity Third, as applications, obtain global gradient estimates in both encoding="application/x-tex">L^p(\Omega (1,p_0) z z encoding="application/x-tex">H^p_z(\Omega {n}{n+1},1] inhomogeneous problem equations domains, 2 infinity mathvariant="normal">∞<!-- ∞ encoding="application/x-tex">p_0\in (2,\infty constant depending only alttext="n"> encoding="application/x-tex">n coefficient matrix Here, defined supported overbar"> accent="false">¯<!-- ¯ </mml:mover> encoding="application/x-tex">\overline {\Omega } denotes closure It worth pointing out range estimate scale Lebesgue spaces sharp above results established without additional assumptions

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardy Spaces and Heat Kernel Regularity

In this article, we will be concerned with questions related to the boundedness of the Riesz transform on manifolds. Since the seminal work of Coulhon and Duong [4], who gave sufficient conditions on the heat kernel so that the Riesz transform is bounded on Lp for 1 < p ≤ 2, several authors have investigated both necessary and sufficient conditions for the boundedness of the Riesz transform on ...

متن کامل

Dirichlet Regularity of Subanalytic Domains

Let Ω be a bounded and subanalytic domain in Rn, n ≥ 2. We show that the set of boundary points of Ω which are regular with respect to the Dirichlet problem is again subanalytic. Moreover, we give sharp upper bounds for the dimension of the set of irregular boundary points. This enables us to decide whether the domain has a classical Green function. In dimensions 2 and 3, this is the case, give...

متن کامل

Commutators of integral operators with variable kernels on Hardy spaces

Abstract. Let TΩ,α (0 ≤ α < n) be the singular and fractional integrals with variable kernel Ω(x,z), and [b,TΩ,α ] be the commutator generated by TΩ,α and a Lipschitz function b. In this paper, the authors study the boundedness of [b,TΩ,α ] on the Hardy spaces, under some assumptions such as the Lr-Dini condition. Similar results and the weak type estimates at the end-point cases are also given...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Local Hardy Spaces Associated with Inhomogeneous Higher Order Elliptic Operators

Let L be a divergence form inhomogeneous higher order elliptic operator with complex bounded measurable coefficients. In this article, for all p ∈ (0, ∞) and L satisfying a weak ellipticity condition, the authors introduce the local Hardy spaces hpL(R ) associated with L, which coincide with Goldberg’s local Hardy spaces h(R) for all p ∈ (0, ∞) when L ≡ −∆ (the Laplace operator). The authors al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2023

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/tran/9000